Stock Prediction and Automated Trading System

نویسندگان

  • Vishal Parikh
  • Parth Shah
چکیده

Stock market decision making is a very challenging and difficult task of financial data prediction. Prediction about stock market with high accuracy movement yield profit for investors of the stocks. Because of the complexity of stock market financial data, development of efficient models for prediction decision is very difficult, and it must be accurate. This study attempted to develop models for prediction of the stock market and to decide whether to buy/hold the stock using data mining and machine learning techniques. The classification techniques used in these models are naive bayes and random forest classification. Technical indicators are calculated from the stock prices based on time-line data and it is used as inputs of the proposed prediction models. 10 years of stock market data has been used for prediction. Based on the data set, these models are capable to generate buy/hold signal for stock market as a output. The main goal of this paper is to generate decision as per user’s requirement like amount to be invested, time duration for investment, minimum profit, maximum loss using machine learning and data analysis techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm

Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...

متن کامل

Automated Stock Trading in PLAT

This report documents the development of an autonomous stock trading agent within the framework of the Penn-Lehman Automated Trading (PLAT) simulator. The three approaches presented take inspiration from reinforcement learning, myopic trading using regression-based price prediction, and market making. The performance of these approaches is assessed separately using a fixed opponent strategy, SO...

متن کامل

Application of Machine Learning: Automated Trading Informed by Event Driven Data

Models of stock price prediction have traditionally used technical indicators alone to generate trading signals. In this paper, we build trading strategies by applying machine-learning techniques to both technical analysis indicators and market sentiment data. The resulting prediction models can be employed as an artificial trader used to trade on any given stock exchange. The performance of th...

متن کامل

An Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market

Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...

متن کامل

Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models

Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015